1,903 research outputs found

    Extension of CART using multiple splits under order restrictions

    Get PDF
    CART was introduced by Breiman et al. (1984) as a classification tool. It divides the whole sample recursively in two subpopulations by finding the best possible split with respect to a optimisation criterion. This method, restricted up to date to binary splits, is extended in this paper for allowing also multiple splits. The main problem with this extension is related to the optimal number of splits and the location of the corresponding cutpoints. In order to reduce the computational effort and enhance parsimony, the reduced isotonic regression was used in order to solve this problem. The extended CART method was tested in a simulation study and was compared with the classical approach in an epidemiological study. In both studies the extended CART turned out to be a useful and reliable alternative

    Design of a horizontal neutron reflectometer for the European Spallation Source

    Full text link
    A design study of a horizontal neutron reflectometer adapted to the general baseline of the long pulse European Spallation Source (ESS) is presented. The instrument layout comprises solutions for the neutron guide, high-resolution pulse shaping and beam bending onto a sample surface being so far unique in the field of reflectometry. The length of this instrument is roughly 55 m, enabling Ύλ/λ\delta \lambda / \lambda resolutions from 0.5% to 10%. The incident beam is focussed in horizontal plane to boost measurements of sample sizes of 1*1 cm{^2} and smaller with potential beam deflection in both downward and upward direction. The range of neutron wavelengths untilized by the instrument is 2 to 7.1 (12.2, ...) {\AA}, if every (second, ...) neutron source ulse is used. Angles of incidence can be set between 0{\deg} and 9{\deg} with a total accessible q-range from 4*10^{-3} {\AA}^{-1} up to 1 {\AA}^{-1}. The instrument operates both in {\theta}/{\theta} (free liquid surfaces) and {\theta}/2{\theta} (solid/liquid, air/solid interfaces) geometry. The experimental setup will in particular enable direct studies on ultrathin films (d ~ 10 {\AA}) and buried monolayers to multilayered structures of up to 3000 {\AA} total thickness. The horizontal reflectometer will further foster investigations of hierarchical systems from nanometer to micrometer length scale, as well as their kinetics and dynamical properties, in particular under load (shear, pressure, external fields). Polarization and polarization analysis as well as the GISANS option are designed as potential modules to be implemented separately in the generic instrument layout. The instrument is highly flexible and offers a variety of different measurement modes. With respect to its mechanical components the instrument is exclusively based on current technology. Risks of failure for the chosen setup are minimum.Comment: Matched to the version submitted to Nuclear Instruments and Methods

    Historic records and GIS applications for flood risk analysis in the Salento peninsula (southern Italy)

    No full text
    International audienceThe occurrence of calamitous meteoric events represents a current problem of the Salento peninsula (Southern Italy). In fact, flash floods, generated by very intense rainfall, occur not only in autumn and winter, but at the end of summer as well. These calamities are amplified by peculiar geological and geomorphological characteristics of Salento and by the pollution of sinkholes. Floodings affect often large areas, especially in the impermeable lowering zones. These events cause warnings and emergency states, involving people as well as socio-economic goods. A methodical investigation based on the historic flood records and an analysis of the geoenvironmental factors have been performed, using a Geographic Information System (GIS) methodology for database processing in order to identify the distribution of areas with different risk degrees. The data, referring to events that occurred from 1968 to 2004, have been collected in a database, the so-called IPHAS (Salento Alluvial PHenomena Inventory), extracted in an easily consultable table. The final goal is the development of a risk map where the areas that are affected by floodings are included between small ridges, the so-called "Serre". More than 50% of the Salento peninsula shows high or very high risk values. The numerous maps that were utilized and generated represent an important basis in order to quantify the flood risk, according to the model using historic records

    Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry

    Get PDF
    This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique

    Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols

    Full text link
    Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure

    Generalized 2d dilaton gravity with matter fields

    Get PDF
    We extend the classical integrability of the CGHS model of 2d dilaton gravity [1] to a larger class of models, allowing the gravitational part of the action to depend more generally on the dilaton field and, simultaneously, adding fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we provide the complete solution of the most general dilaton-dependent 2d gravity action coupled to chiral fermions. The latter analysis is generalized to a chiral fermion multiplet with a non-abelian gauge symmetry as well as to the (anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p. 26, referring to a work of S. Solodukhin, reformulated; references adde

    Cross-country risk quantification of extreme wildfires in Mediterranean Europe.

    Get PDF
    We estimate the country-level risk of extreme wildfires defined by burned area (BA) for Mediterranean Europe and carry out a cross-country comparison. To this end, we avail of the European Forest Fire Information System (EFFIS) geospatial data from 2006 to 2019 to perform an extreme value analysis. More specifically, we apply a point process characterization of wildfire extremes using maximum likelihood estimation. By modeling covariates, we also evaluate potential trends and correlations with commonly known factors that drive or affect wildfire occurrence, such as the Fire Weather Index as a proxy for meteorological conditions, population density, land cover type, and seasonality. We find that the highest risk of extreme wildfires is in Portugal (PT), followed by Greece (GR), Spain (ES), and Italy (IT) with a 10-year BA return level of 50'338 ha, 33'242 ha, 25'165 ha, and 8'966 ha, respectively. Coupling our results with existing estimates of the monetary impact of large wildfires suggests expected losses of 162-439 million € (PT), 81-219 million € (ES), 41-290 million € (GR), and 18-78 million € (IT) for such 10-year return period events. SUMMARY: We model the risk of extreme wildfires for Italy, Greece, Portugal, and Spain in form of burned area return levels, compare them, and estimate expected losses

    Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    Get PDF
    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.Comment: 12 pages, 4 figure

    Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    Full text link
    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the cosmic scale function, its acceleration, the energy density and the hydrostatic pressure are the physical quantities obtained in through the analysis.Comment: To appear in Europhysics Letter

    3D sub-pixel correlation length imaging

    Get PDF
    • 

    corecore